Лазерное излучение как вредный фактор производственной среды
09.08.2019 11:44:00
Лазерное излучение – это вынужденное (посредством лазера) испускание атомами вещества порций-квантов электромагнитного излучения. Слово «лазер» – аббревиатура, образованная из начальных букв английской фразы Light Amplification by Stimulated Emission of Radiation (усиление света с помощью индуцированного излучения). Следовательно, лазер (оптический квантовый генератор) – это генератор электромагнитного излучения оптического диапазона, основанный на использовании вынужденного (стимулированного) излучения.
Лазерное излучение – это вынужденное (посредством лазера) испускание атомами вещества порций-квантов электромагнитного излучения. Слово «лазер» – аббревиатура, образованная из начальных букв английской фразы Light Amplification by Stimulated Emission of Radiation (усиление света с помощью индуцированного излучения). Следовательно, лазер (оптический квантовый генератор) – это генератор электромагнитного излучения оптического диапазона, основанный на использовании вынужденного (стимулированного) излучения.
Источник фото: shutterstock.com.
Лазерная установка включает активную (лазерную) среду с оптическим резонатором, источник энергии ее возбуждения и, как правило, систему охлаждения. За счет монохроматичности лазерного луча и его малой расходимости (высокой степени коллиминированности) создаются исключительно высокие энергетические экспозиции, позволяющие получить локальный термоэффект. Это является основанием для использования лазерных установок при обработке материалов (резание, сверление, поверхностная закалка и др.), в хирургии и т.д.
Лазерное излучение ( способно распространяться на значительные расстояния и отражаться от границы раздела двух сред, что позволяет применять это свойство для целей локации, навигации, связи и т. д. Путем подбора тех или иных веществ в качестве активной среды лазер может индуцировать излучение практически на всех длинах волн, начиная с ультрафиолетовых и кончая длинноволновыми инфракрасными. Наибольшее распространение в промышленности получили лазеры, генерирующие электромагнитные излучения с длиной волны 0,33; 0,49; 0,63; 0,69; 1,06; 10,6 мкм.
БИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ
Действие ЛИ (далее по тексту – ЛИ) на человека весьма сложно. Оно зависит от параметров ЛИ, прежде всего от длины волны, мощности (энергии) излучения, длительности воздействия, частоты следования импульсов, размеров облучаемой области («размерный эффект») и анатомо-физиологических особенностей облучаемой ткани (глаз, кожа). Поскольку органические молекулы, из которых состоит биологическая ткань, имеют широкий спектр абсорбируемых частот, то нет оснований считать, что монохроматичность ЛИ может создавать какие-либо специфические эффекты при взаимодействии с тканью.
Пространственная когерентность также не меняет существенно механизма повреждений излучением, так как явление теплопроводности в тканях и присущие глазу постоянные мелкие движения разрушают интерференционную картину уже при длительности воздействия, превышающей несколько микросекунд. Таким образом, ЛИ пропускается и поглощается биотканями по тем же законам, что и некогерентное, и не вызывает в тканях каких-либо специфических эффектов.
Источник публикации: shutterstock.com.
Энергия ЛИ, поглощенная тканями, преобразуется в другие виды энергии – тепловую, механическую, энергию фотохимических процессов, что может вызывать ряд эффектов: тепловой, ударный, светового давления и пр. ЛИ представляет опасность для органа зрения. Сетчатка глаза может быть поражена лазерами видимого (0,38 – 0,7 мкм) и ближнего инфракрасного (0,75 – 1,4 мкм) диапазонов. Лазерное ультрафиолетовое (0,18 – 0,38 мкм) и дальнее инфракрасное (более 1,4 мкм) излучения не достигают сетчатки, но могут повредить роговицу, радужку, хрусталик.
Достигая сетчатки, ЛИ фокусируется преломляющей системой глаза, при этом плотность мощности на сетчатке увеличивается в 1000 – 10 000 раз по сравнению с плотностью мощности на роговице. Короткие импульсы (0,1 с – 10-14 с), которые генерируют лазеры, способны вызвать повреждение органа зрения за значительно более короткий промежуток времени, чем тот, который необходим для срабатывания защитных физиологических механизмов (мигательный рефлекс 0,1 с).
Вторым критическим органом к действию ЛИ являются кожные покровы. Взаимодействие лазерного излучения с кожным покровом зависит от длины волны и пигментации кожи. Отражающая способность кожного покрова в видимой области спектра высокая. ЛИ дальней инфракрасной области начинает сильно поглощаться кожными покровами, поскольку это излучение активно поглощается водой, которая составляет 80% содержимого большинства тканей, возникает опасность возникновения ожогов кожи.
Хроническое воздействие низкоэнергетического (на уровне или менее ПДУ ЛИ) рассеянного излучения может приводить к развитию неспецифических сдвигов в состоянии здоровья лиц, обслуживающих лазеры. При этом оно является своеобразным фактором риска развития невротических состояний и сердечно-сосудистых расстройств. Наиболее характерными клиническими синдромами, обнаруживаемыми у работающих с лазерами, являются астенический, астеновегетативный и вегетососудистая дистония.
НОРМИРОВАНИЕ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ
Научно обоснованы два подхода к нормированию ЛИ: первый – по повреждающим эффектам тканей или органов, возникающим непосредственно в месте облучения; второй – на основе выявляемых функциональных и морфологических изменений ряда систем и органов, не подвергающихся непосредственному воздействию. Гигиеническое нормирование основывается на критериях биологического действия, обусловленного в первую очередь областью электромагнитного спектра. В соответствии с этим диапазон ЛИ разделен на ряд областей:
– от 0,18 до 0,38 мкм – ультрафиолетовая область;
– от 0,38 до 0,75 мкм – видимая область;
– от 0,75 до 1,4 мкм – ближняя инфракрасная область;
– свыше 1,4 мкм – дальняя инфракрасная область.
В основу установления величины ПДУ положен принцип определения минимальных «пороговых» повреждений в облучаемых тканях (сетчатка, роговица глаза, кожа), обнаруживаемых современными методами исследования во время или после воздействия ЛИ. Нормируемыми параметрами являются энергетическая экспозиция Н (Дж х (м/100)) и облученность Е (Вт x (м/100)), а также энергия W (Дж) и мощность Р (Вт).
Данные экспериментальных и клинико-физиологических исследований свидетельствуют о превалирующем значении общих неспецифических реакций организма в ответ на хроническое воздействие низкоэнергетических уровней ЛИ по сравнению с местными локальными изменениями со стороны органа зрения и кожи. При этом ЛИ видимой области спектра вызывает сдвиги в функционировании эндокринной и иммунной систем, центральной и периферической нервной системы, белкового, углеводного и липидного обменов. ЛИ с длиной волны 0,514 мкм приводит к изменениям в деятельности симпатоадреналовых и гипофиз-надпочечниковых систем.
Длительное хроническое действие ЛИ длиной волны 1,06 мкм вызывает вегетососудистые нарушения. Практически все исследователи, изучавшие состояние здоровья лиц, обслуживающих лазеры, подчеркивают более высокую частоту обнаружения у них астенических и вегетативно-сосудистых расстройств. Следовательно, низкоэнергетическое ЛИ при хроническом действии выступает как фактор риска развития патологии, что и определяет необходимость учета этого фактора в гигиенических нормативах.
Первые ПДУ ЛИ в России для отдельных длин волн были установлены в 1972 г., а в 1981 г. введены в действие первые санитарные нормы и правила. В США существует стандарт ANSI – Z 136. Разработан также стандарт Международной электротехнической комиссии (МЭК) – публикация 825. Отличительной особенностью отечественного документа по сравнению с зарубежными является регламентация значений ПДУ с учетом не только повреждающих эффектов глаз и кожи, но и функциональных изменений в организме.
Широкий диапазон длин волн, разнообразие параметров ЛИ и вызываемых биологических эффектов затрудняют задачу обоснования гигиенических нормативов. К тому же экспериментальная и особенно клиническая проверка требуют длительного времени и средств. Поэтому для решения задач по уточнению и разработке ПДУ ЛИ используют математическое моделирование. Это позволяет существенно уменьшить объем экспериментальных исследований на лабораторных животных. При создании математических моделей учитываются характер распределения энергии и абсорбционные характеристики облучаемой ткани.
Метод математического моделирования основных физических процессов (термический и гидродинамические эффекты, лазерный пробой и др.), приводящих к деструкции тканей глазного дна при воздействии ЛИ видимого и ближнего инфракрасного диапазонов с длительностью импульсов от 1 до 10-12 с, был использован при определении и уточнении ПДУ ЛИ, вошедших в последнюю редакцию «Санитарных норм и правил устройства и эксплуатации лазеров» СНиП № 5804-91 (далее по тексту – Правил № 5804-91, прим. ред.), которые разработаны на основании результатов научных исследований и учета основных положений следующих документов:
– Санитарные нормы и правила устройства и эксплуатации лазеров № 2392-81;
– Стандарт Международной электротехнической комиссии (МЭК), публикация 825, издание первое, 1984 – «Радиационная безопасность лазерных изделий, классификация оборудования, требования и руководство для потребителей»;
– изменения к стандарту МЭК – публикация 825 (1987).
Тот факт, что эти нормы в настоящее время подлежат применению, засвидетельствован Письмом Роспотребнадзора от 16.05.2007 № 0100/4961-07-32. В нем приведен Перечень основных действующих нормативных и методических документов по гигиене труда, а также сказано следующее: в соответствии с законодательством Российской Федерации на территории Российской Федерации действуют санитарные правила, нормы и гигиенические нормативы, утвержденные, в частности, Минздравом СССР, в части, не противоречащей санитарному законодательству Российской Федерации. Указанные документы действуют впредь до отмены либо принятия новых нормативных правовых актов взамен существующих.
Правила № 5804-91 устанавливают предельно допустимые уровни (ПДУ) лазерного излучения при различных условиях воздействия на человека, классификацию лазеров по степени опасности генерируемого ими излучения, а также требования:
– к устройству и эксплуатации лазеров;
– к производственным помещениям, размещению оборудования и организации рабочих мест;
– к персоналу;
– к состоянию производственной среды;
– к применению средств защиты;
– к медицинскому контролю.
Следует иметь в виду, что значения ПДУ опасных и вредных производственных факторов на рабочем месте, оборудованном лазерной техникой, регулируются также ГОСТами, СНиПами, СН и иными документами, которые перечислены в Приложении 1 к Правилам № 5804-91. Однако многие из этих документов утратили силу или заменены новыми нормативами. Как уже говорилось выше, биологическое воздействие лазерного излучения на организм зависит от длины волны излучения, длительности импульса (воздействия), частоты следования импульсов, площади облучаемого участка, а также от биологических и физико-химических особенностей облучаемых тканей и органов. Механизм взаимодействия излучения с тканями может быть тепловым, фотохимическим, ударно-акустическим и так далее...
Все публикации